Каталог
Личный кабинет
 
Корзина
0
Главная \ Продукция \ Машины для измельчения зерна \ Вальцовый станок А1-БЗН, А1-БЗ-2Н, А1-БЗ-3Н 

Вальцовые станки, вальцы, валки БЗН для мукомольных заводов

Вальцовый станок А1-БЗН, А1-БЗ-2Н, А1-БЗ-3Н

Станки А1-БЗН могут обладать гладкой или рифлёной рабочей поверхностью в зависимости от назначения оборудования. Конструкция устройств предусматривает наличие водяного охлаждения мелющих быстроразвивающихся вальцов. Ещё одной особенностью данного оборудования является   возможность выполнить перенарезку рифлей без применения демонтажа подшипников.

Стабильность режима помола достигается за счёт дистанционного управления отвалом и привалом. Станок практически не требует вмешательства персонала в его работу.

Вальцовый станок БЗН сегодня входит в число самого распространённого отечественного оборудования из числа устройств, комплектующих мукомольные заводы. Станки обладают различными модификациями и назначениями, которые могут влиять на их отличия. Одной из наиболее значимых черт является расположение привода. В зависимости от модификации привод может находится под межэтажными перекрытиями или на том же этаже, где располагается и сам станок.  Также станки могут различаться способами вывода измельченного продукта и  рельефами рабочих поверхностей.

В компании «Агромаш» Вы также можете приобрести вальцы (валки) БЗН, а также другие запчасти, которые всегда имеются в наличии. Проконсультируйтесь с нашими специалистами — они всегда предоставят Вам достоверную и исчерпывающую информацию по всем видам продукции. Для приобретения станков, вальцев  и валков БЗН и другого оборудования позвоните по т. 8-831-220-42-86

Вальцовые станки типа A1-БЗН выпускают в трех модификациях, для различных мукомольных заводов. Станки устанавливают группами по четыре-пять машин с общими капотами. Набор станков различной формы исполнения и последовательность их монтажа в каждой группе регламентированы проектом типового мукомольного завода. Характерно, что электродвигатели этих вальцовых станков размещают на специальной площадке под междуэтажным перекрытием.

Вальцовый станок типа A1-БЗН имеет 21 форму исполнения.

Вальцовый станок А1-БЗ-2Н используют как на вновь строящихся, так и на реконструируемых мукомольных заводах взамен станка ЗМ-2. Станок А1-БЗ-2Н отличается от станка AI-БЗН наличием индивидуальных капотов и возможностью установки электродвигателя на том же перекрытии, где расположен станок, а также под перекрытием на специальной площадке. Станок имеет 39 форм исполнения.

Вальцовый станок A1-БЗ-ЗН используют как на вновь строящихся, так и на реконструируемых мукомольных заводах взамен станка БВ-2.

Он отличается от описанных выше станков наличием устройства для верхнего забора измельченного продукта. Это устройство состоит из приемных труб для отсоса продукта непосредственно после измельчения из бункеров под вальцами, системы пневмотранспорта. Вальцовый станок А1-БЗ-ЗН имеет 22 формы исполнения.


Вальцовый станок А1-БЗН состоит из следующих основных сборочных единиц: мелющих вальцов, привода вальцов, меж-вальцовой передачи, механизмов настройки и параллельного сближения вальцов, системы привала - отвала вальцов, приемно-питающего устройства и станины.

valtsovyy_stanok_a1-bznВальцовый станок А1-БЗН:
1 - приемная труба; 2 - сигнализатор уровня продукта; 3 - заслонка; 4 - винтовое устройство; 5 - рукоятка; 6 - штурвал; 7 - стопорная головка; 8 - нож-очиститель; 9 - выпускной бункер; 10 - щетка-очиститель; 11, 12 - медленно и быстровращающиеся вальцы; 13 - питающий валок; 14 - шнек; 15 - шторки-датчики

Мелющие вальцы устанавливаются парами в обеих половинах станка. Причем линия, соединяющая центры торцевых окружностей вальцов, образует угол 30° с горизонталью. Длина вальца - 1000 мм, а номинальный диаметр бочки - 250 мм. Масса полого вальца примерно на 30% меньше цельного - 270 кг.
Валец представляет собой двухслойную полую цилиндрическую бочку, диаметр внутренней полости которой - 158 мм, глубина наружного отбеленного слоя (рабочего) - 10 мм. С обоих концов бочки запрессованы цапфы. На конической части цапфы установлены подшипники. Концевая цилиндрическая часть служит для насадки приводного шкива или шестерен межвальцовой передачи. В цапфы быстровращающегося вальца вставлены трубки с охлаждающей водой.

Мелющие вальцы вращаются в двухрядных роликовых сферических подшипниках, имеющих коническую посадку внутренних обойм. Подшипник демонтируют с конической части цапфы гидравлическим съемником, который нагнетает масло через отверстие в цапфе в место сопряжения с поверхностью внутренней обоймы подшипника. Корпуса подшипников верхнего вальца прикреплены к боковой части станины четырьмя болтами, а корпуса подшипников нижнего подвижного вальца имеют свободные концы (локти), опирающиеся на предохранительные пружины. Корпус нижнего вальца выполнен разъемным, что позволяет снимать вальцы вместе с подшипниками.

Устройство для охлаждения верхнего быстровращающегося вальца работает следующим образом. Валец 6 охлаждается водой, поступающей через трубку 5, которая введена свободным концом через осевое отверстие в цапфе во внутреннюю полость вальца. Трубка имеет два отверстия для разбрызгивания воды внутри вальца. Открытый конец трубки жестко соединен с корпусом 7. Внутри корпуса в подводящем водопроводе установлен пробковый кран, регулирующий подачу воды во внутреннюю полость вальца. Теплая вода отводится через кольцеобразный зазор между неподвижной трубкой 5 и вращающейся бронзовой втулкой 2 с коническим раструбом. Отработавшая вода поступает в сливную камеру, отводится по трубе в охлаждающее устройство и возвращается в систему рециркуляции. Нагретую воду можно использовать для увлажнения зерна в подготовительном отделении мукомольного завода.

Центробежные силы инерции, возникающие при вращении вальца, способствуют хорошему омыванию внутренней его полости и отводу теплоты. При нормальной работе системы охлаждения температура быстровращающегося вальца не должна превышать 60 °С. По данным испытаний, температура поверхности вальца не превышает 36 °С, а продуктов после измельчения - 25 °С.

Охлаждение вальцов оказывает положительное влияние на технологические показатели помола. Снижение температуры в зоне измельчения предотвращает подсушивание и чрезмерное измельчение оболочек, а также перегрев продуктов размола. Расход воды на охлаждение не превышает 0,6 м3/ч для одного вальцового станка. Однако в настоящее время на практике постепенно отказываются от водяного охлаждения вальцов по причинам, связанным с экономическими и дополнительными трудозатратами.

okhlazhdeniya_ustroystvo_dl Устройство для охлаждения быстровращающегося вальца.
1 - корпус; 2 - бронзовая втулка; 3 - шестерни межвальцовой передачи; 4 - подшипник; 5 - трубка; 6 - цапфа; 7 - валец

Ведущие зарубежные фирмы достигают практически тех же результатов внедрением активной системы аспирации и др.

В условиях производства необходимо контролировать температуру нагрева вальцов и измельченного продукта. При увеличении температуры продукта выше нормы после прохождения его через вальцовый станок, необходимо выявить причину нарушения технологического процесса: износ рабочей поверхности вальцов, непараллельность вальцов, неравномерность заполнения мелющей щели, нарушение в системе охлаждения вальцов и др.

В процессе размола к рабочей поверхности вальцов прилипают лепешки измельченных частей зерна. Для очистки рифленых вальцов всех систем, кроме I, II драных, 12-й размольной установлены щетки 10 из полимерного материала, а гладкие вальцы очищаются ножами 8. Механизм привода вальцов состоит из привода верхнего вальца и межвальцовой передачи. Крутящий момент от электродвигателя передается клиноременной передачей на ведомый шкив, который устанавливается на правой цапфе верхнего быстровращающегося вальца. Диаметр ведущего шкива для рифленых вальцов составляет 150 мм, а для гладких - 132 мм.

Предусмотрено два варианта установки электродвигателей: непосредственно на перекрытии, где располагается вальцовый станок, и под перекрытием на специальной площадке (для станка А1-БЗН подходит только второй вариант).

Межвальцовая передача представляет собой редуктор, состоящий из двух косозубых шестерен шириной 55 мм. Большая чугунная шестерня и малая стальная установлены, соответственно, на левых концах цапф нижнего и верхнего вальцов. Обе шестерни вращаются в масле, залитом в кожух 10.

valtsovyy_stanok_a1-bzn_v_r Вальцовый станок А1-БЗН в разрезе:

1 - горловина; 2 - шкив; 3 - пневмопереключатель привала-отвала; 4 - пружина заслонки; 5 - преобразователь сигнала; 6 - шкив питающего механизма; 7 - рукоятка переключения скоростей; 8 - шестерни межвальцовой передачи; 9 - корпус системы охлаждения; 10 - корпус межвальцовой передачи; 11 - корпус подшипника; 12 - блок реле; 13 - конец (локоть) свободный подвижного корпуса подшипника; 14 - фильтр воздушный; 15 - клапан электромагнитный; 16 - воздухопроводы; 17 - пружина предохранительная; 18 - пневмоцилиндр; 19 - кнопки «Пуск», «Остановка»; 20 - станина; 21 - подвеска; 22 - вал эксцентриковый; 23 - штурвал механизма настройки параллельности вальцов; 24 - рукоятка точной настройки межвальцового зазора; 25 - тяга; 26 - винт ограничительный; 27- цапфа

Настройка вальцов на параллельность производится двумя механизмами винтового типа, сопряженными с механизмом параллельного сближения. При вращении штурвала по часовой стрелке через систему рычагов подвеска тянет локоть подвижного подшипника вверх и сближает вальцы на одном конце, при вращении штурвала против часовой стрелки подвеска опускается, поворачивает рычаг вокруг эксцентрикового вала и отводит нижний валец. Стопорной головкой 7 с помощью рукоятки фиксируется установленное положение нижнего вальца. Такая же операция производится и для другого конца вальца.

Максимальное изменение зазора между вальцами с помощью механизма настройки параллельности составляет 4,4 мм. Чувствительность механизма характеризуется изменением зазора за один оборот штурвала и равна 0,22 мм. Если измельчение по длине вальцов неодинаково, то вращением штурвалов 6 поднимают или опускают свободные концы корпусов подвижных подшипников, т. е. выравнивают рабочий зазор между вальцами.

Механизм параллельного сближения вальцов предназначен для точной установки рабочего зазора. Требуемый рабочий зазор между вальцами устанавливается вращением рукоятки 5, которая через систему рычагов разворачивает эксцентриковый вал так, чтобы соответственно приблизить или отвести нижний валец. Максимальное изменение зазора между вальцами механизмом параллельного сближения составляет 1,2 мм, а чувствительность механизма за один оборот рукоятки - 0,06 мм.

Система привала - отвала вальцов обеспечивает автоматическое и ручное управление этими операциями. В рабочем режиме функционирует автоматическое управление привалом - отвалом вальцов. Ручной привал и отвал вальцов выполняется подъемом и опусканием рукоятки 5. Усилие, прикладываемое к рукоятке, передается на эксцентриковый вал и далее по схеме, рассмотренной выше, происходит привал или отвал. Положение привала вальца фиксируется защелкой, которая зацепляется с упором, запрессованным в боковине станка.

При попадании в вальцовый станок инородных тел размером до 5 мм предохранительная пружина обеспечивает безопасное их прохождение в результате грубого отвала нижнего вальца.

Автоматическое управление привалом - отвалом вальцов включает две схемы: электрическую, измеряющую уровень продукта под питающим механизмом и вырабатывающую соответствующий электрический сигнал управления, и пневматическую - воздействующую через систему рычагов на эксцентриковый вал, который обеспечивает привал-отвал по схеме, рассмотренной выше.

Электрическая схема состоит из сигнализатора уровня продукта, блока реле 72 и электромагнитного клапана 75. Пневматическая схема состоит из входного фильтра 14, пневмопереключателя 3 и пневмоцилиндра 18.
Сигнализатор уровня продукта представляет собой конденсатор с определенной емкостью. Изменение уровня продукта в приемной трубе станка изменяет емкость сигнализатора и соответственно управляющий сигнал, который преобразуется и усиливается в схеме электронного блока. При определенной величине сигнал вызывает замыкание контактов реле. Ток напряжением 220 В подается на обмотки электромагнитного клапана 75, который открывает доступ сжатому воздуху под давлением 0,50 МПа к поршню пневмоцилиндра 18. Поршень поднимает шток и через систему рычагов разворачивает эксцентриковый вал 22 на привал нижнего вальца.

При уменьшении уровня продукта в приемной трубе до определенного предела управляющий сигнал по величине становится недостаточным для удержания контактов реле в замкнутом состоянии. Клапан перекрывает доступ сжатому воздуху в пневмоцилиндр, поршень со штоком опускается и механизм срабатывает на отвал вальца. При работе станка в автоматическом режиме в экстренных случаях возможен принудительный отвал вальцов ручным пневмопереключателем 3.

Приемно-питающее устройство состоит из приемной трубы, валкового питающего механизма с приводом и заслонкой и системы регулирования подачи продукта.

Приемная труба представляет собой стеклянный цилиндр, установленный в горловине вальцового станка. Приемные трубы вальцовых станков, обслуживающие две различные технологические системы, разделены вертикальной перегородкой, которая обеспечивает автономное питание каждой половины станка. В каждой половине трубы установлен сигнализатор уровня продукта.

Механизм подачи продукта в зависимости от физико-механических свойств исходного продукта на различных технологических системах имеет семь форм исполнения и включает в различных сочетаниях валковый питатель, редуктор, заслонку и привод.

Питатель может быть выполнен в трех модификациях: дозирующий валок с промежуточными валками (для I драной системы), дозирующий валок со шнеком (для остальных драных систем) и дозирующий и распределительный валки (для размольных систем). На поверхности дозирующего валка нанесены продольные рифли с уклоном 1°30". В зависимости от технологической системы их может быть 50, 30 или 20. Распределительный валок имеет 50 поперечных рифлей с шагом 2 мм. Шнек выполняется в виде вала с лопастями. Промежуточный валик не имеет нарезки, он изолирован от зоны подачи продукта и выполняет лишь кинематические функции.

Все питатели типа валка со шнеком и двухвалковые для 11-й и 12-й размольных систем имеют редукторы для четырехпозиционного регулирования скоростей дозирующего валка. Скорость вращения валка питающего механизма устанавливают так, чтобы слой продукта был тонким и распределялся по всей его длине.

mekhanizm_podachi_produkta Механизм подачи продукта
1 - рукоятка; 2 - шнек; 3 - пружина; 4, 5 - кулачковые полумуфты; 6 - шкив; 7 - плоскоременная передача; 8 - быстровращающийся валец; 9 - тяга с поводком; 10 - валок; 11 - блок шестерен

Заслонка 3 образует с дозирующим валком питающий зазор, который устанавливают вручную с помощью винтового устройства 4 и регулируют автоматически. Автоматическое регулирование питающего зазора каждой половины станка осуществляется с помощью двух шарнирно подвешенных гофрированных шторок-датчиков 15 и системы рычагов. Чем больше поступает в станок продукта, тем больше питающий зазор, и наоборот. Для каждой технологической системы с помощью ограничительного винта вручную устанавливают диапазон автоматического перемещения заслонки.

Привод механизма подачи продукта осуществляется плоскоременной передачей 7 от ступицы шкива привода мелющих вальцов. Вращение передается на шкив 6, на одном валу с которым установлено две кулачковые полумуфты 4, 5, которые входят в зацепление одновременно с привалом медленновращающегося вальца. Питающие валки установлены в подшипниках скольжения.

Станина вальцового станка разборная, чугунная, состоит из двух боковин, двух продольных стенок и траверсы. Детали станины соединены между собой болтами. В боковинах сделаны отверстия и проемы для размещения подвижных и неподвижных сборочных единиц станка. Станок полностью закрыт капотом, который изготовлен из четырех съемных нижних и четырех откидных верхних стальных штампованных ограждений.

Работа станка начинается с пуска электродвигателя, от которого клиновыми ремнями вращение передается сначала шкиву верхнего вальца, а затем через межвальцовые шестерни - нижнему вальцу. От ступицы шкива верхнего вальца вращение плоским ремнем передается шкиву питающих валков, а от него - ведущей полумуфте кулачковой муфты.

При заполнении приемной трубы продуктом емкостной сигнализатор уровня обеспечивает замыкание цепи электромагнитного клапана, который соединяет магистраль сжатого воздуха с рабочей полостью пневмоцилиндра. При этом поршень поднимает шток вверх, а от него через систему рычагов разворачивается эксцентриковый вал, который перемещает вверх свободные концы (локти) подшипников нижнего вальца, в результате чего происходит привал мелющих вальцов.

Под действием пружины ведомая полумуфта кулачковой муфты входит в зацепление с ведущей полумуфтой и вращение через шестерни передается питающим валкам. Под действием массы продукта датчик питания через систему рычагов поворачивает заслонку, и через питающий зазор начинает поступать продукт. При прекращении поступления продукта в приемную трубу станка электронная схема размыкает цепь электромагнитного клапана и через систему рычагов происходит отвал мелющих вальцов.

Технологическая эффективность вальцовых станков для размола зерна

Определяется оптимальным сочетанием трех основных показателей: степенью измельчения зерна или его частиц, производительностью каждой пары вальцов и удельным расходом электроэнергии.

Степень измельчения характеризуется уменьшением крупности частиц. Ее оценивают коэффициентом извлечения. Коэффициент извлечения (%):

M=(d-a)/(100-a)

где а и d - количество проходовой фракции в продукте до и после вальцового станка, г.

По данным испытаний, удельный расход электроэнергии станка А1-БЗН на I драной системе составил 17,3; на II драной системе - 7,7; на

2-й размольной системе - 21,9-25,3 кВт-ч/т.

Эксплуатация вальцовых станков для размола зерна

При работе станка на холостом ходу проверяют: наличие и качество смазки; работу устройства привально-отвального механизма (вручную, от пневмопереключателя, от системы дистанционного и местного включения, в автоматическом режиме); блокировку включения питающих валков и перемещение заслонки; отсутствие заклинивания вальцов при вращении вручную; крепление резьбовых соединений; правильность установки и равномерность рабочего зазора между вальцами; перемещение очистителей вальцов; состояние ремней; нагрев подшипников (не более 60 °С); работу электросхемы и аппаратуры; подачу воды и давление сжатого воздуха в сетях; работу подводящих и отводящих транспортных устройств.

Настройка и регулирование режима размола станка под нагрузкой сводятся, в основном, к регулированию системы питания и рабочего зазора между мелющими вальцами. Для станков, снабженных редуктором, сначала устанавливают минимальную скорость вращения дозирующего валика, а затем подбирают ее оптимальное значение. В соответствии с распределением нагрузок по технологическим системам с помощью ограничительного болта вручную регулируют величину перемещения заслонки над дозирующим валком.

На станках размольных систем визуально проверяют равномерность распределения продукта по длине распределительного валка. На каждой половине вальцового станка проверяют извлечение муки, которое должно соответствовать действующим «Правилам организации и ведения технологического процесса на мукомольных предприятиях».

Регулирование системы питания и рабочего зазора между вальцами следует проводить последовательным приближением к требуемым показателям с постоянным контролем нагрузки электродвигателя, а также подводящих и отводящих транспортных систем.

При настройке режима размола проверяют чувствительность автоматической системы регулирования подачи исходного зерна в установленном диапазоне, расположение конуса продукта в приемной трубе относительно сигнализатора уровня.

После настройки режима размола должны быть затянуты контровочные устройства органов регулирования. В дальнейшем для данной помольной партии не следует корректировать режим помола, который должен обеспечивать стабильные результаты в течение длительного времени.

Подробные технические характеристики вальцовых станков